Wolmer’s Trust High School for Girls
CAPE COMPUTER SCIENCE

Grade 11

Teacher: Mrs. McCallum-Rodney

Operating System Function – PROCESS MANAGEMENT
Introduction to Process Management
· A process does nothing unless its instructions are executed by the CPU.
· A process can be thought of as a program in execution.
· A process needs certain resources, including CPU time, memory, files and I/O devices, to accomplish its tasks. These resources are either given to the process when it is created, or allocated to it while it is running.

· In addition to physical and logical resources that a process obtains when it is created, some initialization data (input) may be passed along. For example, a process whose function is to display the status of a file on the screen of a terminal, will be given as an input the name of the file, and will execute the appropriate instructions and system calls to obtain the desired information and display it on the terminal.

· When the process terminates, the operating system will reclaim any reusable resources.

· A program by itself is not a process; a program is a passive entity, such as the contents of a file stored on a disk. A process is an active entity, with a program counter specifying the next instruction to be executed.

· The execution of a process must be executed sequentially.

· The CPU executes one instruction of the process after another, until the process is complete. At most one instruction is executed on behalf of the process. Therefore, although two processes may be associated with the same program, they are nevertheless considered two separate execution sequences. It is common to have a program that spawns many processes as it runs.

Note: A process is the unit of work in a system.
· Such a system consists of a collection of processes, some of which are operating-system processes (those that execute system codes) and the rest of which are user processes (those that execute user code).

· All these processes can potentially execute concurrently, by multiplexing the CPU among them.

Operating System responsibilities in relation to Process Management

· The creation and deletion of both user and system processes
· The suspension and resumption of processes
· The provision of mechanisms for process synchronization

· The provision of mechanisms for process communication
· The provision of mechanisms for deadlock handling (deadlock is a situation in which each process in a set of processes is waiting for an event that only another process in the set can cause. since all the process are waiting, the system enters a deadlocked condition)
Process State
· As a process execute, it changes state.

· The state of a process is defined in part by the current activity of that process.

· Each process may be in one of the following states:

· New

The process is being created

· Running

Instructions are being executed

· Blocked/Waiting
The process is waiting for some event to occur (such as an I/O

completion or reception of a signal)

· Ready

The process is waiting to be assigned to a processor

· Terminated

The process has finished execution

· It is important to realise that only one process can be running on any processor at any instant. Many processes can be ready and waiting.
· Consider the following state diagram:
[image: image1.png]

Process Control Block
Each process is represented in the operating system by a process control block (PCB) – also called a task control block. The PCB simply serves as the repository for any information that may vary from process to process. It contains many pieces of information associated with a specific process, including:
· Process state
The state may be new, ready, running, waiting, halted, and so on.
· Program Counter

The counter indicates the address of the next instruction to be executed for this process.
· CPU registers
The central processing unit contains a number of memory locations which are individually addressable and reserved for specific purpose. These memory locations are called registers. Some of theses registers are accessible to the programmer while some others are for the exclusive use of CPU. This latter set of registers is used for storage, interpretation and execution of instructions and the intermediate results. Total number of these registers varies among different computers. Widely used microprocessors have got eighteen 32-bit data registers which are used for storing instructions and operand of various sizes. One of these seven are 32-bit general purpose registers.
· CPU scheduling information
This information includes a process priority, pointers to scheduling queues, and any other scheduling parameters.

· Memory-management information
This information may include the value of registers, the page tables, or the segment of tables depending on the memory system used by the operating system.

· Accounting information
This information includes the amount of CPU and real time used, time limit, account numbers and job or process numbers.

· I/O state Information
The information includes the list of I/O devices allocated to this process and a list of open files.
	Pointer
	Process State

	Process Number

	Program Counter

	Registers

	Memory Limit

	List of open files

	.
.

.

INTERRUPTS
The operating system controls and schedules processes for execution by the CPU. In a single-tasking system, the schedule is straightforward. The operating system allows the application to begin running, suspending the execution only long enough to deal with interrupts and user input.

To effectively manage many processes the core of operating system makes use of what is known as interrupts.

Interrupts are special signals sent by hardware or software to the CPU. It's as if some part of the computer suddenly raised its hand to ask for the CPU's attention in a lively meeting. Sometimes the operating system will schedule the priority of processes so that interrupts are masked -- that is, the operating system will ignore the interrupts from some sources so that a particular job can be finished as quickly as possible. There are some interrupts (such as those from error conditions or problems with memory) that are so important that they can't be ignored. These non-maskable interrupts (NMIs) must be dealt with immediately, regardless of the other tasks at hand.

An interrupt is a signal to a processor indicating that an asynchronous event has occurred. Here the current sequence of instructions is temporarily suspended, and a sequence appropriate to the interruption is started in its place. Its purpose is to alert the operating system when any special event occurs so that it can suspend its current activity and deal appropriately with the new situation.
Usually an interrupt gives a signal from a device attached to a computer or from a program within the computer that causes the main program that operates the computer (the operating system) to stop and figure out what to do next. Almost all personal (or larger) computers today are interrupt-driven - that is, they start down the list of computer instructions in one program (perhaps an application such as a word processor) and keep running the instructions until either (A) they can't go any further or (B) an interrupt signal is sensed. After the interrupt signal is sensed, the computer either resumes running the program it was running or begins running another program.
Basically, a single computer can perform only one computer instruction at a time. But, because it can be interrupted, it can take turns in which programs or sets of instructions that it performs. This is known as multitasking. It allows the user to do a number of different things at the same time. The computer simply takes turns managing the programs that the user effectively starts. Of course, the computer operates at speeds that make it seem as though all of the user's tasks are being performed at the same time. (The computer's operating system is good at using little pauses in operations and users take time to work on other programs.)

An operating system usually has some code that is called an interrupt handler. The interrupt handler prioritises the interrupts and saves them in a queue if more than one is waiting to be handled. The operating system has another little program, sometimes called a scheduler, which figures out which program to give control to next.

In general, there are hardware interrupts and software interrupts. A hardware interrupt occurs, for example, when an I/O operation is completed such as reading some data into the computer from a tape drive. A software interrupt occurs when an application program terminates or requests certain services from the operating system. In a personal computer, a hardware interrupt request (IRQ) has a value associated with it that associates it with a particular device. Interrupts can be broadly divided into the following:

Interrupts generated by the running process:

A process wishing to use the services of operating system may use a specific type of interrupt, a supervisor call (SVC) as a means of notifying the supervisor.

A process that attempts an undefined or prohibited action will cause an interrupts that will notify the supervisor.

An operation wishing to communicate with the supervisor may cause an interrupt.

External Interrupts

External interrupts are a mechanism for I/O devices that communicate infrequently with the CPU to get the attention of the CPU. Rather than have the CPU constantly check to see if the I/O device needs attention (this is polling), the device interrupts the CPU.

There's a protocol between device and CPU that allows the device to indicate what kind of service it wants from the CPU. Usually, this is done using an interrupt number. The CPU then locates an interrupt handler based on this number, runs the code for the handler, and tells the device it's done.

Dealing with I/O devices can slow down the CPU a lot because devices are often as slow as hard drives, in response time. However, such interrupts are infrequent, so the CPU only has to manage the interrupts when needed.

Restart interrupts

These interrupts occur when the operator selects the restart function at the console or when a restart SIGP (signal processor) instruction is received from another processor.

I/O Interrupts
After a program issues an I/O operation to a specific device, an interrupt is returned from the device indicating the status of the I/O operation. CPU processes the interrupt first: it converts the results into a format your virtual machine can understand, and then calls the I/O first-level interrupt handler (FLIH). The FLIH gets control in primary space mode and returns control in the same mode as when the interrupt occurred.

The I/O FLIH saves information about (a) the state of the program that was running at the time the interrupt occurred and (b) the interrupt itself. The FLIH then looks for a second-level handler (SLIH) to process the interrupt. If a SLIH exists, the FLIH calls it. The SLIH processes the interrupt and returns control back to the FLIH, which will then return control to the program that was running when the interrupt occurred.

When you define your interrupt handler, you can specify that interrupts be handled in an alternate way. The FLIH will mark the interrupt as having occurred and will return. The SLIH will not be called until a later time determined by your program.
PRE-EMPTIVE AND NON-PRE-EMPTIVE
Non-Pre-emptive Scheduling
Non-preemptive algorithms are designed so that once a process enters the running state, it is not removed from the processor until it has completed its service time (or it explicitly yields the processor).

context_switch() is called only when the process terminates or blocks.

Type of Non-Pre-emptive Schedule – First Come First Serve (FCFS)

This is a Non-Premptive scheduling algorithm. FCFS (also known as FIFO) strategy assigns priority to processes in the order in which they request the processor. The process that requests the CPU first is allocated the CPU first. When a process comes in, add its PCB to the tail of ready queue. When the running process terminates, the next process in the ready queue is passed on to the CPU.
Comments: While the FIFO algorithm is easy to implement, it ignores the service time request and all other criteria that may influence the performance with respect to turnaround or waiting time.

Problem: One Process can monopolize CPU

Solution: Limit the amount of time a process can run without a context switch. This time is called a time slice.

Pre-emptive Scheduling

Preemptive algorithms are driven by the notion of prioritized computation. The process with the highest priority should always be the one currently using the processor. If a process is currently using the processor and a new process with a higher priority enters the ready list, the process on the processor should be removed and returned to the ready list until it is once again the highest-priority process in the system.

context_switch() is called even when the process is running, that is usually done via a timer interrupt.
Two types of Pre-emptive Schedule
1. Shortest Job First (SJF)

Maintain the Ready queue in order of increasing job lengths. When a job comes in, insert it in the ready queue based on its length. When current process is done, pick the one at the head of the queue and run it.

This is probably the most optimal in terms of turnaround/response time.
Comments: SJF is proven optimal only when all jobs are available simultaneously.

Problem: SJF minimizes the average wait time because it services small processes before it services large ones. While it minimizes average wait time, it may penalize processes with high service time requests. If the ready list is saturated, then processes with large service times tend to be left in the ready list while small processes receive service. In extreme case, where the system has little idle time, processes with large service times will never be served. This total starvation of large processes may be a serious liability of this algorithm.
2. Round Robin

Round Robin calls for the distribution of the processing time equitably among all processes requesting the processor. Run process for one time slice, then moves the process I it is not completed 1 to back of queue. Each process gets equal share of the CPU. Most systems use some variant of this.

Problem: Round robin assumes that all processes are equally important; each receives an equal portion of the CPU. This sometimes produces bad results. Consider three processes that start at the same time and each require three time slices to finish. Using FIFO how long does it take the average job to complete (what is the average response time)? How about using round robin?

[image: image2.png]3456

78

9

* Process A finishes after 3 slices, B 6, and C 9. The average is (3+6+9)/3 = 6 slices.

[image: image3.png]Round robin:
0123456789
A
B
c

* Process A finishes after 7 slices, B 8, and C 9, so the average is (7+8+9)/3 = 8 slices.

Round Robin is fair, but uniformly inefficient.
Page 1

