Wolmer’s Trust High School for Girls
CAPE COMPUTER SCIENCE

Grade: Lower and Upper Sixth

 Teacher: Mrs. McCallum-Rodney

ACTIVITIES OF THE DESIGN PHASE - ARCHITECTURAL DESIGN

INTRODUCTION
· Large systems can be decomposed into sub-systems that provide some related set of services. The initial design process of identifying these sub-systems and establishing a framework for subsystem control and communication called architectural design.
· Architectural design usually comes before detailed system specification. Ideally, a specification should not include any design information. In practice, this is unrealistic except for small systems.
· Architectural decomposition is necessary to structure and organise the specification. The architectural model is the starting point for the specification of the various parts of the system.

· There are number of similarities between the role of a software system architect and the role of the architect in a building project:
· He/She is the technical interface between the customer and the contractor responsible for building the system.

· A bad architectural design for a building cannot be rescued by good construction; a bad architectural design for a software system cannot be made good by effective implementation.
· There are specialist building architects and there are specialist system architects who concentrate on a small number of different types of system.
· There are schools or styles of building architecture and different models or styles of systems architecture.

· Although software architects may place constraints on the appearance of the software (user interface), they are normally more concerned with the system structure.
· A system architect is usually an employee of the software contractor rather than the customer.

· There is no generally accepted process model for architectural design. The process depends on application knowledge and on the skill and intuition of the system architect. As part of the process, the following activities are usually necessary:
1. System structuring

The system is structured into a number of principal sub-systems where a sub-system is an independent software unit. Communications between sub-systems are identified.
2. Control Modelling

A general model of the control relationships between the parts of the system is established.

3. Modular Decomposition
Each identified sub-system is decomposed into modules. The architect must decide on the types of module and their interconnection.

· These activities are usually interleaved in some way. During any of these process stages, it may be necessary to develop the design in more detail to find out if architectural design decisions allow the system to meet its requirements.

· The output of the architectural design process is an architectural design document. This consists of a number of graphical representations of the system models along with associated descriptive text. It should describe how the system is structured into sub-systems and how each sub-system is structured into modules.
DIFFERENCE BETWEEN SUB-SYSTEMS AND MODULES

A Sub-system is a system in its own right whose operation does not depend on the services provided by other sub-systems. Sub-systems are composed of modules and have defined interfaces which are used for communication with other sub-systems.

A module is a system component that provides one or more services to other modules. It makes use of services provided by other modules. It is not usually considered as an independent system.
SYSTEM STRUCTURING

· The first phase of the architectural design is usually concerned with decomposing a system into a set of interacting sub-systems.
· At its most abstract level, an architectural design may be depicted as a block diagram in which each box represents a sub-system.

· Boxes within boxes indicate that the sub-system itself have been decomposed into sub-systems.

· Arrows mean that the data and/or control is passed from sub-system to sub-system in the direction of the arrows.

· Consider the following diagram:

Block diagram of a packaging robot control system.

The diagram is an architectural design for packages robot system. This system can pack different kinds of object. It uses a vision sub-system to pick out objects on a conveyor, identifies the type of object, and selects the right kind of packaging from the range of possibilities. It then moves objects from one delivery conveyor to be packaged. Packaged objects are placed on another conveyor.
· An architectural block diagram presents an overview of the system structure. It is generally understandable to the various engineers who may be involved in the system development process.

CONTROL MODELS
· The models for structuring a system are concerned with how a system is decomposed into sub-systems.
· To work as a system, sub-systems must be controlled so that their services are delivered to the right place at the right time.

· Control models at the architectural level are concerned with the control flow between sub-systems.

· Two general approaches to control can be identified as:

1. Centralised Control

One sub-system has overall responsibility for control and starts and stops other sub-systems.

It may also transfer control to another sub-system but will expect to have this control responsibility returned to it.
2. Event Based control
Rather than control information being embedded in a sub-system, each sub-system can respond to externally generated events. These events might come from other sub-systems or from the environment of the sub-system.

Centralised Control
In a centralised control model, one sub-system is designated as the system controller and has responsibility for managing the execution of other systems. Centralised control models fall into two classes depending on whether the controlled sub-systems execute sequentially or in parallel.

(1) The call return model

This is the familiar top-down sub-routine model where control starts at the top of the sub-routine hierarchy and, through sub-routine calls, passes to lower levels in the tree. The sub-routine model is only applicable to sequential systems.

Consider the following figure that illustrates the call-return model of control.

In the figure above, the Main Program can call Routines 1, 2 and 3. Routine 1 can call Routines 1.1 or 1.2, Routine 3 can call Routines 3.1 or 3.2, and so on. This is a model of the program dynamics. It is not a structural model; there is no need for routine 1.1 to be part of Routine 1.
This familiar model is embedded in programming languages such as Pascal and C. Control passes from a higher level routine in the hierarchy to a lower level routine. It then returns to the point where the routine was called. The currently executing subroutine has responsibility for control and can either call other routine or return control to its parent.

(2) The Manager Model

This is applicable to concurrent systems. One system component is designated as a systems manager and controls the starting, stopping and coordination of other system processes. A process is a subsystem or module which can execute in parallel with other processes. A form of this model may also be applied in sequential systems where a management routine calls particular sub-systems depending on the values of some state variables. This is usually implemented as a case statement.

This model is normally used in real-time systems which do not have very tight time constraints. The central controller manages the execution of a set of processes associated with sensors and actuators.
The systems controller process decides when processes should be started or stopped depending system state variables. It checks if other processes have produced information to be processed or passes information to them for processing. The controller usually loops continuously, polling sensors and other processes for events or state changes. For this reason, this model is sometimes called an event-loop model.

Event Based (Driven) Control System
This model is generated by externally generated events. Two event-driven control models are:

1. Broadcast models

In these models, an event is, in principle, broadcast to all sub-systems. Any sub-system which is designed to handle that event responds to it.

2. Interrupt-driven models

These are exclusively used in real time systems where external interrupts are detected by an interrupt handler. They are then passed to some other component for processing.

MODULAR DECOMPOSITION
After a structural architecture has been designed, another level of decomposition may be part of the architectural design process. This is the decomposition of systems into modules. The components in modules are usually smaller than sub-systems and this allows alternative decomposition modules to be used.
The two models that can be used when decomposing a sub-system into modules are:

1. An Object-oriented model

The system is decomposed into a set of communicating objects. An object-oriented model of a system architecture structures the system into a set of loosely coupled objects with well-defined interfaces. Objects call on services offered by other objects. (You have been taught this topic previously)

2. A Data flow Model

The system is decomposed into functional modules which accept input data and transform it, in some way, to output data. This also called a pipeline approach. (You have been taught this topic previously)

Vision

System

Object Identification System

Arm Controller

Gripper

Controller

Packaging Selection System

Packaging System

Conveyor Controller

Assignment – Due Date : February 13, 2008

More specific models of the structure may be developed which show how sub-systems share data, how they are distributed and how they interface with each other. The three main standard models are repository model, client-server model and an abstract machine model.

Write a 500 words paper on the models identified above. Use diagrams to illustrate your understanding.

Please Note: This paper is 5% of your exam grade.

Main Program

Routine 2

Routine 3

Routine 1

Routine 1.1

Routine 1.2

Routine 3.1

Routine 3.2

System Controller

Sensor Processor

Actuator Processes

Computation

Processes

User Interface

Fault Handler

Page 6

