Wolmer’s Trust High School for Girls

COMPUTER SCIENCE

Lower and Upper Sixth

 Teacher: Mrs. McCallum-Rodney

Deliverables for the Analysis Phase of Software Development
Requirements Document
Before we look at the requirements document, there are few concepts that need to be explained if you are appreciate the need for a requirements document. These include, requirement definition, functional and non-functional requirements and requirements specification.
Requirements Definition

· A software requirement definition is an abstract description of the services which the system should provide and the constraints under which the system must operate.

· It should only specify the external behaviour of the system. It should not be concerned with system design characteristics.

· The requirements should not be described with implementation models. The definition must therefore be written in such a way that it is understandable by customers without knowledge of specialised notation. The notations used for requirements definition must therefore be based on natural language, forms and simple intuitive diagrams.

· System requirements may either be functional or non-functional requirements:

· Functional requirements
These are statements of services the system should provide, how the system should react to particular inputs and how the system should behave in particular situations. In some cases, the functional requirements may also explicitly state what the system should not do.

· Non-functional requirements
These are constraints on the services or functions offered by the system. They include timing constraints, constraints on the development process, standards and so on.

· The functional requirements of a system should be both complete and consistent. Completeness means that all the services required by the user should be defined. Consistency means that requirements should not have contradictory definitions. In practice, for large, complex systems, it is practically impossible to achieve requirements consistency and completeness. The reason for this is partly because of the inherent system complexity and partly because different viewpoints have inconsistent needs. These inconsistencies might not be obvious initially; after deeper analysis problems will surface.

· The three major types of problems with requirements definitions written in Natural Language are as follows:
1. LACK OF CLARITY

It is very difficult to use language in a precise and unambiguous (unmistakeable) way without making the document wordy or difficult to read.

2. REQUIREMENTS CONFUSION
Functional requirements, non-functional requirements, system goals and design information may not be clearly distinguished.

3. REQUIREMENTS AMALGAMATION

Several different requirements may be expressed together as a single requirement.

· Some organisations try to produce a single specification to act as both a requirements definition and requirements specification. When a requirements definition (for non-technical reader) and is combined with a requirements specification (for technicians) there is often confusion between concepts and details.

· It is easy to criticise but much more difficult to write requirements definition. The first version of a requirements definition is inevitably unstructured because it will include any information that comes to mind. To have a good specification, you will need to restructure and reorganise the document to make it more readable and usable.

Please Note:

· The Rationale associated with the requirements definition is important because without it, some facilities may appear arbitrary and their importance may not be understood by the engineers developing a more detailed specification or maintaining the system.

Please Note:

· The definition includes a list of user actions. This is sometimes necessary so that all functions can be provided in a consistent way. Implementation details should not be included in this additional information. Therefore, the definition does not set out how the cursor and symbols are moved, or how the type is selected.
Requirements Specification
· Requirements specifications add further information to the requirements definition.

· The requirements specification is usually presented with the system models. Developed during requirement analysis.

· The specification plus the models should describe the system to be designed and implemented.

· It should include all necessary information about what the system must do and all constraints on its operation.

· Natural Language is often used to write requirements specifications. However, a natural language specification is not particularly good basis for either a design or a contract between customer and system developer. The reasons are as follows:

(1) Natural language specification relies on the specialization readers and writers using the same words for the same concepts. This leads to misunderstandings because of the natural vagueness of natural language words.
(2) A natural language requirements specification is over-flexible. You can say the same thing in completely different ways. It is up to reader to find out when requirements are the same and when they are distinct. This is a very error-prone process.

(3) It is difficult to find all related requirements. To discover the consequence of a change, you may have to look at every requirement rather than just a group of related requirements.

Because of these problems, requirements specifications written in natural language are prone to misunderstandings. These are often times not discovered until the design or implementation stages of the process. As a result, the problems may be expensive to resolve. Therefore, alternative notations should be used to avoid some of the problems of unrestricted natural language.

ALTERNATIVE NOTATIONS ARE AS FOLLOWS:

	Notations
	Description

	Structured Natural Language
	This approach depends on defining standard forms or templates to express the requirements specification. Therefore, for each specification you will fill out forms which requires:
· Function (eg. Add node)

· Description

· Inputs

· Source

· Outputs

· Destination

· Requires

· Pre-condition

· Post-condition

· Side-effects

	Design Description languages
	This approach relies on using a language which is like a programming language but with more abstract features to specify the requirements by defining an operational model of the system.

	Requirements Specification languages
	Various special-purpose languages have been designed to express software requirements. The advantage of this approach is that special-purpose tool support can be developed.

· When requirements specifications are written, it is important that related requirements should be cross-referenced. When requirements are changed, other requirements which may not be affected can be found by following the cross-references. Traceability is a property of requirement specification which reflects the ease of finding related requirements.
· Sometimes, relationships between requirements can be very subtle. It is therefore impossible to be definitive about how to write traceable requirements. However, there are some simple methods traceability that may be applied to any requirements definition or specifications. They are as follows:

· All requirements should be assigned a unique number.

· Requirements should explicitly identify related requirements by referring to their number.

· Each requirement document should contain a cross-reference matrix showing related requirements. Different matrices may be developed for different types of relationship.
Example of Requirements Definition and Requirement Specifications

Requirement definition

Requirement specification

Difference between functional and non-functional requirements

· Functional requirements are typically phrased with subject/predicate constructions, or noun/verb. "The system prints invoices."
WHILE

Non-functional requirements may be found in adverbs or modifying clauses, such as "The system prints invoices *quickly*" or "The system prints invoices *with confidentiality*".

· From a mathematical point of view, a "function" takes an input(s) and yields an output(s). "Functional" refers to the set of functions the system it to offer,
WHILE

"non-functional" refers to the manner in which such functions are performed.

Requirements Document

System Requirements are expressed in a software requirements document. The software requirements document is an official statement of what is required of the system developers.

This requirement document includes the requirements definition and the requirement specification. In some cases, these may not be presented separately but integrated into a single description. Sometimes, the requirements definition is presented as an introduction to the requirements specification.

The software requirement document is not a design document. It should set out what the system should do without specifying how it is to be done. The requirements should be stated so that there is traceability between these requirements and the final system design. This means that it should be possible to take each specified requirement and map it onto the part of the system design that implements that requirement. If the services, constraints and properties specified in the software requirements document are satisfied by the software design then that design is an acceptable solution to the problem.
In principle, the requirements set out in this document ought to be complete and consistent. All system functions should be specified and requirements should not conflict. Errors and omissions will inevitably exist in the document so it should be structured to be easy to change. The document should therefore be split into chapters and sections. Cross-reference from one requirement to another should be kept to a minimum.

6 REQUIREMENTS WHICH A SOFTWARE REQUIREMENTS DOCUMENT SHOULD SATISFY

1. It should only specify external system behaviours.

2. It should specify constraints on the implementation.

3. It should be easy to change.

4. It should serve as a reference tool for system maintenance.

5. It should record consideration about the life cycle of the system.

6. It should characterize acceptable responses to undesired events.
A POSSIBLE GENERIC STRUCTURE FOR A REQUIREMENTS DOCUMENT IS AS FOLLOWS:
	Chapter
	Description

	Introduction
	This should describe the need for the system. It should briefly describe its functions and explain how it will work with other systems. It should describe how the system fits into the overall business or strategic objectives of the organization commissioning the software.

	Glossary
	This should define the technical terms used in the document. No assumptions should be made about the experience or expertise of the reader.

	System Models
	This should set out one or more system models showing the relationships between the system components and the system and its environment. These might include object models, data flow diagrams and semantic data models.

	Functional

Requirements Definition
	The services provided for the user should be described in this section. The description may be in Natural Language, diagrams or other notations that are understandable by customers.

	Non-Functional

Requirements Definition
	The constraints imposed on the software and restrictions on the freedom of the designer should be described here and related to the functional requirements. This might include details of specific data representation, response time and memory requirements, and so on. Product and process standards which must be followed should be specified.

	System Evolution
	This should describe the fundamental assumptions on which the system is based and anticipated changes due to hardware evolution, changing user needs, and so on.

	Requirements specification
	This should describe the functional requirements in more detail. If necessary, further detail may also be added to the non-functional requirements, for example interfaces to other systems may be defined.

It is particularly important to relate the system to the business objectives of the organization and the business rationale for the system. It must be clear to those responsible for paying for the system that there is a case for buying it.
The requirements document is a reference tool. It should record anticipation about the life cycle of the system. It will be used by maintenance engineers to find out what the system is supposed to do.
Example 1 of requirements amalgamation

“The database shall support the generation and control of configuration objects; that is, objects which are themselves groupings of other objects in the database. The configuration control facilities shall allow access to the objects in a version group by the use of incomplete name.”

The requirement includes both conceptual and detailed information. It expresses the concept that there should be configuration control facilities provided as an inherent part. However, it also includes the detail that those facilities should allow access to objects in a version group by use of an incomplete name. This detail should be better left to a section in which the configuration control requirements were specified more fully.

Example 2

“2.6 Grid Facilities: To assist in the positioning of entities on a diagram, the user may turn on a grid in either centimetres or inches, via an option on the control panel. Initially, the grid is off. The grid may be tuned on and off at any time during an editing session and can be toggled between inches and centimetres at any time. A grid option will be provided on the reduce-to-fit view but the number of lines shown will be reduced to avoid filling the smaller diagram with grid lines. ”

The first sentence in this requirement mixes up three different kinds of requirement:

A conceptual, functional requirement states that the editing system should provide a grid. It presents a rational for this.

A non-functional requirement giving detailed information about the grid units (centimetres to inches)

A non-functional user interface requirement which defines how that grid is switched on and off by the user.

It also gives some but not all initialization information. It defines that the grid is initially off. However, it does not define its units when turned on. It provides some detailed information that the user can toggle between units, but not the spacing between grid lines.

Example 3 – Recommended solution to example 2

2.6 Grid Facilities

The editor shall provide a grid facility where the matrix of horizontal and vertical lines provides a background to the editor window. This grid shall be a passive grid where the alignment of entities is the user’s responsibility.

Rationale: A grid helps the user to create a tidy diagram with well-spaced entities. Although an active grid, where entities ‘snap-to’ grid lines can be useful, the positioning is imprecise. The user is the best person to decide where entities should be positioned.

When used in ‘reduced-to-fit’ mode (see 2.1), the number of units separating grid lines must be increased.

Rationale: If line spacing is not increased, the background will be very cluttered with grid lines.

Example 4

3.5.1 Adding nodes to a design

The editor shall provide a facility where users can add nodes of a specified type to a design. Nodes are selected when they are added to the design.

The sequence of actions to add a node should be as follows:

The user should select the type of node to be added

The user moves the cursor to the approximate node position in the diagram and indicates that the node symbol should be added to that point.

The symbol may then be dragged to its final position.

Rationale: The user is the best person to decide where to position the node on the diagram. This approach gives the user direct control over node type selection and positioning.

The software must provide a means of representing and accessing external files created by other tools.

 The user should be provided with the facilities to define the type of external files.

Each external file type may have an associative tool which may be applied to the file.

Each external file type may be presented as a specific icon on the user display.

Facilities should be provided for the icon representing an external file type to be defined by the user.

When a user selects an icon representing an external file, the effect of that selection is to apply the tool associated with the type of the external file to the file represented by the selected icon.

9

